How to win the Olympus Bioscapes photomicrography contest

_20140923_215021_2

All you need to win a $5,000 microscope is a $250,000 microscope

It is almost time to dust off your cover-image quality photomicrographs and enter theĀ Olympus Bioscapes microscopy contest. According to the techniques used by contest winners since the contest’s inauguration in 2004, the best way to better your chances is to use a confocal microscope. A side-effect of inventing a technique that wins a Nobel Prize is that eventually it becomes run-of-the-mill, and “conventional” widefield fluorescence also makes a good showing. Biophotonics purists will find plenty to like as well: transmitted light microscopy is well represented in a smattering of techniques including differential interference contrast, Zernike phase, polarised light, Rheinberg illumination and Jamin-Lebedeff interference

image3301

Confocal may be at the top of the heap at the moment, but transmitted light technqiues continue to make strong appearances in stunning images among the top-ten places in Olympus bioscapes.

In a promising development, computational imaging techniques also find success in the contest. The broadly termed “computational optics” includes techniques such as structured illumination, in which the patterns in several images (rather uninspiring on their own) are combined to give a computed image with resolution just slightly better than the physically imposed law of diffraction. Also in this category is light sheet microscopy, which creates nice images on its own ( and has since the Ultramikroskop [pdf]from 1900), but is even better suited for combining many images to form a volume image. In my opinion, treating light as computable fields, equally amenable to processing in physical optics or electronics, is the enabling philosophy for the next deluge of discoveries to be made with biomicroscopy.

Compare the winningest techniques from the Olympus contest with those of the Nikon Small World contest below. Interestingly enough, confocal microscopy falls behind the simpler widefield fluorescence in the Nikon contest, and both have been bested throughout the history of the competition by polarised microscopy. Some of the differences in Olympus and Nikon contest winners may be due to the timing of technological breakthroughs. Bioscapes began in 2004, while Small World has been in operation since the late seventies. The vogue techniques and state-of-the-art have certainly evolved over the last four decades.

Nikon Small Wordl Winners

How to win the Nikon Small World photomicrography competition

The deadline for the Nikon Small World photomicrography competition is fast approaching (April 30th), and I’ve parsed some data on what types of images tend to win over since the contest’s inception in the late 1970s. The graphs below include data from both the stills and the newly minted video competition.

nikonWinnersBar

Figure 1: The total number of images utilizing each technique for places 1-20, Honorable Mentions, and Images of Distinction.

Right away we see that polarized light techniques have a distinct advantage in terms of how often we see them on the winners podium. This was a bit of a surprise. I’m always left with the impression of a preponderance of confocal images after each year’s announcement of winners, but I suppose confocal would have not been seeing much use until the 80s.

nikonHeatMapWinners

Figure 2: Heat map of the total number of images from 1st to 20th place.

Polarized light still easily dominates the field, with fluorescence and confocal making strong showings (you’ll notice many of the technique categories for NSW are overlapping). Techniques grouped under fluorescence do have a slightly higher number of 1st place finishes at 9 versus 8, and of total top 5 finishes (41 vs. 40). Beyond the top 5, polarized light has essentially more placers at every position.

Good luck to everyone who enters. I don’t have the rights to display my favorites from previous contests (e.g. this, this, or this), but I will display a few of my own, non-winner, images.

SONY DSC

Freshwater ostracod

SONY DSC

Freshwater copepod (cyclops)